Embedding relations between local Hardy and modulation spaces
نویسندگان
چکیده
منابع مشابه
Full Characterization of Embedding Relations between Α-modulation Spaces
In this paper, we consider the embedding relations between any two α-modulation spaces. Based on an observation that the α-modulation space with smaller α can be regarded as a corresponding α-modulation space with larger α, we give a complete characterization of the Fourier multipliers between α-modulation spaces with different α. Then we establish a full version of optimal embedding relations ...
متن کاملwavelets, modulation spaces and pseudidifferential operators
مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...
Composition Operators between Bergman and Hardy Spaces
We study composition operators between weighted Bergman spaces. Certain growth conditions for generalized Nevanlinna counting functions of the inducing map are shown to be necessary and sufficient for such operators to be bounded or compact. Particular choices for the weights yield results on composition operators between the classical unweighted Bergman and Hardy spaces.
متن کاملLocal Riesz transforms characterization of local Hardy spaces
For 0 < p ≤ 1, let hp(Rn) denote the local Hardy space. Let θ̂ be a smooth, compactly supported function, which is identically one in a neighborhood of the origin. For k = 1, . . . , n, let (rkf )̂ (ξ) = −i(1 − θ̂(ξ))ξk/|ξ|f̂(ξ) be the local Riesz transform and define (r0f )̂ (ξ) = (1 − θ̂(ξ))f̂(ξ). Let Ψ be a fixed Schwartz function with ∫ Ψ dx = 1, letM > 0 be an integer and suppose (n− 1)/(n+M − 1)...
متن کاملOn Hardy-sobolev Embedding
1. Interpolation inequalities. A classical problem in analysis is to understand how “smoothness” controls norms that measure the “size” of functions. Maz’ya recognized in his classic text on Sobolev spaces the intrinsic importance of inequalities that would refine both Hardy’s inequality and Sobolev embedding. Dilation invariance and group symmetry play an essential role in determining sharp co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2009
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm192-1-7